Project Euler problem #13, titled Large Sum, is described as follows:
• You are given one hundred 50-digit numbers.
• Your task is to compute the sum of these 100 numbers.
• Then, you must output only the first ten digits of the resulting sum.
In other words, the main requirement is: “Find the first ten digits of the sum of the given one-hundred 50-digit numbers.”
This problem seems to be better solved with a “trick” rather than a brute-force approach.
While it’s possible to solve it using a BigInt library, doing so might be computationally expensive.
Since the goal is to extract only the first 10 digits of the sum, there’s no need to calculate the entire sum of all the numbers. Instead, we can work with only the leading digits of each number. This reduces the complexity significantly. Even though using an int data type might be risky for larger values, using a 64-bit integer (int64) is more than sufficient. A 32-bit integer can represent values up to , while a 64-bit integer can represent values up to .
Here’s the source code I wrote for this approach:
//------------------------------------------------
// Project Euler #13 - Large Sum
// - by Aubrey Choi
// - created at 2014-12-29
//------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <time.h>
#include <math.h>
#include "isprime.h"
void solve1()
{
char *s = "37107287533902102798797998220837590246510135740250"
"46376937677490009712648124896970078050417018260538"
"74324986199524741059474233309513058123726617309629"
"91942213363574161572522430563301811072406154908250"
"23067588207539346171171980310421047513778063246676"
"89261670696623633820136378418383684178734361726757"
"28112879812849979408065481931592621691275889832738"
"44274228917432520321923589422876796487670272189318"
"47451445736001306439091167216856844588711603153276"
"70386486105843025439939619828917593665686757934951"
"62176457141856560629502157223196586755079324193331"
"64906352462741904929101432445813822663347944758178"
"92575867718337217661963751590579239728245598838407"
"58203565325359399008402633568948830189458628227828"
"80181199384826282014278194139940567587151170094390"
"35398664372827112653829987240784473053190104293586"
"86515506006295864861532075273371959191420517255829"
"71693888707715466499115593487603532921714970056938"
"54370070576826684624621495650076471787294438377604"
"53282654108756828443191190634694037855217779295145"
"36123272525000296071075082563815656710885258350721"
"45876576172410976447339110607218265236877223636045"
"17423706905851860660448207621209813287860733969412"
"81142660418086830619328460811191061556940512689692"
"51934325451728388641918047049293215058642563049483"
"62467221648435076201727918039944693004732956340691"
"15732444386908125794514089057706229429197107928209"
"55037687525678773091862540744969844508330393682126"
"18336384825330154686196124348767681297534375946515"
"80386287592878490201521685554828717201219257766954"
"78182833757993103614740356856449095527097864797581"
"16726320100436897842553539920931837441497806860984"
"48403098129077791799088218795327364475675590848030"
"87086987551392711854517078544161852424320693150332"
"59959406895756536782107074926966537676326235447210"
"69793950679652694742597709739166693763042633987085"
"41052684708299085211399427365734116182760315001271"
"65378607361501080857009149939512557028198746004375"
"35829035317434717326932123578154982629742552737307"
"94953759765105305946966067683156574377167401875275"
"88902802571733229619176668713819931811048770190271"
"25267680276078003013678680992525463401061632866526"
"36270218540497705585629946580636237993140746255962"
"24074486908231174977792365466257246923322810917141"
"91430288197103288597806669760892938638285025333403"
"34413065578016127815921815005561868836468420090470"
"23053081172816430487623791969842487255036638784583"
"11487696932154902810424020138335124462181441773470"
"63783299490636259666498587618221225225512486764533"
"67720186971698544312419572409913959008952310058822"
"95548255300263520781532296796249481641953868218774"
"76085327132285723110424803456124867697064507995236"
"37774242535411291684276865538926205024910326572967"
"23701913275725675285653248258265463092207058596522"
"29798860272258331913126375147341994889534765745501"
"18495701454879288984856827726077713721403798879715"
"38298203783031473527721580348144513491373226651381"
"34829543829199918180278916522431027392251122869539"
"40957953066405232632538044100059654939159879593635"
"29746152185502371307642255121183693803580388584903"
"41698116222072977186158236678424689157993532961922"
"62467957194401269043877107275048102390895523597457"
"23189706772547915061505504953922979530901129967519"
"86188088225875314529584099251203829009407770775672"
"11306739708304724483816533873502340845647058077308"
"82959174767140363198008187129011875491310547126581"
"97623331044818386269515456334926366572897563400500"
"42846280183517070527831839425882145521227251250327"
"55121603546981200581762165212827652751691296897789"
"32238195734329339946437501907836945765883352399886"
"75506164965184775180738168837861091527357929701337"
"62177842752192623401942399639168044983993173312731"
"32924185707147349566916674687634660915035914677504"
"99518671430235219628894890102423325116913619626622"
"73267460800591547471830798392868535206946944540724"
"76841822524674417161514036427982273348055556214818"
"97142617910342598647204516893989422179826088076852"
"87783646182799346313767754307809363333018982642090"
"10848802521674670883215120185883543223812876952786"
"71329612474782464538636993009049310363619763878039"
"62184073572399794223406235393808339651327408011116"
"66627891981488087797941876876144230030984490851411"
"60661826293682836764744779239180335110989069790714"
"85786944089552990653640447425576083659976645795096"
"66024396409905389607120198219976047599490197230297"
"64913982680032973156037120041377903785566085089252"
"16730939319872750275468906903707539413042652315011"
"94809377245048795150954100921645863754710598436791"
"78639167021187492431995700641917969777599028300699"
"15368713711936614952811305876380278410754449733078"
"40789923115535562561142322423255033685442488917353"
"44889911501440648020369068063960672322193204149535"
"41503128880339536053299340368006977710650566631954"
"81234880673210146739058568557934581403627822703280"
"82616570773948327592232845941706525094512325230608"
"22918802058777319719839450180888072429661980811197"
"77158542502016545090413245809786882778948721859617"
"72107838435069186155435662884062257473692284509516"
"20849603980134001723930671666823555245252804609722"
"53503534226472524250874054075591789781264330331690";
int64_t u = 0;
for( int i = 0 ; i < 100 ; i++ )
{
int64_t c = 0;
char *p = s+i*50;
for( int j = 0 ; j < 11 ; j++ )
{
c *= 10;
c += *(p+j) - '0';
}
u += c;
}
int len = 0;
int64_t v = 1;
while( u/v ) len++, v *= 10;
u /= v/10000000000;
printf("Ans = %jd\n", u);
}
int main()
{
clock_t t;
t = clock();
solve1();
printf("Elapsed time is %.3f seconds \n", (float)(clock() - t) / CLOCKS_PER_SEC);
return 0;
}
'Programming > Project Euler' 카테고리의 다른 글
[C/C++] Project Euler #15 Counting fractions(Combination) (2) | 2024.12.23 |
---|---|
[C/C++] Project Euler #14 Longest Collatz Sequence(Dynamic Programming) (2) | 2024.12.22 |
[C/C++] Project Euler #12 Highly Divisible Triangular Number (2) | 2024.12.02 |
Project Euler #11 : Largest product in a grid(Brute Force) (0) | 2020.01.26 |
515. Project Euler #515 : Dissonant Numbers (0) | 2015.05.13 |